10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Bounding the Execution Cost of WebAssembly
Functions

John Shortt!, Amy Felty!, and Anil Somayaji?

! University of Ottawa, Ottawa ON, Canada
[jshor018,afelty]@uottawa.ca
2 Carleton University, Ottawa ON Canada soma@scs.carleton.ca

Abstract. Bounds on worst-case execution time can improve system
reliability and security in a variety of contexts. Past work on bounding
execution time has faced challenges due to the lack of formal specifica-
tions of mainstream computing environments. WebAssembly is a low-
level language originally designed for efficient execution in browsers that
is used today in edge computing and other environments. WebAssem-
bly has been formally specified and has a mechanized soundness proof,
greatly facilitating the formal analysis of WebAssembly programs. Here,
we present a new tool for bounding the worst-case execution time of Web-
Assembly functions that is based on the formalization of WebAssembly.
We have tested our tool on significantly more and larger functions than
those studied in previous work (over 107,000 functions, with the longest
function being 4156 lines of WebAssembly from 392 lines of C), and it
successfully and efficiently analyzed the vast majority of functions tested.
Progress in our tool suggests the feasibility of calculating worst-case ex-
ecution bounds on large real-world code bases.

Keywords: Program Analysis, Execution Cost Analysis, Formal Verification,
WebAssembly

1 Introduction

In the context of web applications, edge computing, digital contracts, and nu-
merous rich document formats, systems execute untrusted code. If not properly
contained, such code can consume arbitrary resources, resulting in denials of
service, battery exhaustion, information theft, and application and host compro-
mises. Language and operating system sandboxes can limit the potential damage
of malicious code, but to accommodate increasingly complex applications, such
sandboxes must allow code to have significant CPU and memory resources. Fixed
limits can reduce but not eliminate the risk of giving arbitrary code access to
CPU and memory resources. Worst-case execution time (WCET), however, of-
fers an alternative defense strategy: by calculating the worst-case execution time
of a program in advance, it becomes possible to decide not to run code if it will
consume too many resources. As we know, this problem cannot be solved in

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

2 J. Shortt et al.

the general case (otherwise we would have a solution to the halting problem
[21]), but we also know that formally defined systems can be reasoned about
with sophisticated tools that allow us to make interesting conclusions about the
behavior of those systems.

Today WebAssembly [I7I25] is the leading technology for untrusted code
written in arbitrary programming languages. WebAssembly is widely deployed
in web browsers, is an enabling technology for edge computing, and is finding
applications in other domains. Two properties in particular contribute to offering
a path toward bounding the execution time of programs: it is low level and
it is formally specified. With regard to the first property, WebAssembly can
serve as a compilation target much like CPU-specific assembly languages and
bytecode languages like the Java Virtual Machine (JVM) and Common Language
Runtime (CLR). WebAssembly’s appeal comes from highly sandboxed yet very
efficient runtimes, something that is not generally available for other compiler
targets. The second key property, the fact that WebAssembly has been formally
specified, greatly facilitates program analysis. The formal specification assures
that WebAssembly has no undefined behavior, and its program control flow
mechanisms use the ideas of structured programming in a way that also simplifies
reasoning about them. Other compiler targets have been formalized; however,
these formalizations are post-hoc and often only approximate the functioning of
the language in practice. In contrast, WebAssembly has been formally specified
from the beginning, thus making it an important application area for program
analysis techniques both because of potential practical applications and because
it has been designed to facilitate formal program analysis.

Our tool, which we call Wanalyze, and is available on GitHu]ﬂ shows the
potential of WebAssembly to simplify formal program analysis, for example by
eliminating the need to detect loops (they are evident in the structured control
flow) and reducing the need for directly analyzing complex data structures (Web-
Assembly has few data types and simple data structures), while still allowing
large-scale production code to be analyzed. Further, because WebAssembly itself
is formally specified, our results apply not to idealized execution environments
(as is often the case for C variants), but to production runtimes.

As a step towards this goal, we have chosen to focus on analyzing individual
functions rather than entire programs. Specifically, the scope of our work is the
static analysis of each function in a WebAssembly module to determine a bound
on its cost of execution. As we discuss later, previous work in the literature
shows how this can be extended to whole programs [2[8/4l6]. Although we do
not fully handle whole programs, we are able to analyze functions that are much
larger than the programs analyzed in previous work (up to four times larger)
and for over 107,000 functions from real-world code bases, giving us a breadth
of experience significantly beyond that of past work.

In this paper we present the methods we have developed for calculating the
worst-case cost of WebAssembly functions and our efforts to validate our meth-
ods. Wanalyze is implemented in OCaml, consists of approximately 5000 lines

3 https://www.github.com/jsCarleton/wanalyze

https://www.github.com/jsCarleton/wanalyze

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

[
H OW O~N OO W N K

o
N

=
w N

S~ W N R

Bounding the Execution Cost of WebAssembly Functions 3

of code, and is licensed under the Apache 2.0 license and available for download.
We have evaluated Wanalyze on WebAssembly programs and libraries of vary-
ing complexity and have found that it is able to successfully produce execution
bounds for the vast majority of these functions, while being able to analyze thou-
sands of lines of code per second in our tests run on relatively modest hardware.

The contributions of this paper consist of the software tool, Wanalyze, which
is the first published application that can bound the worst-case cost of Web-
Assembly functions, demonstrating the feasibility of bounding real-world code
with the analysis of over 107,000 functions.

In the rest of this paper, Section [2| contains a motivating example for the
techniques that we use. Section [3| contains details of our analysis techniques. In
Section [4] we describe the experimental tests that have been performed and their
results. We discuss related work in Section [l Section [6] concludes.

2 Example

By way of example, we examine the WebAssembly code for the inner loop of a
bubble sort implementation. Listing[I] contains a C implementation and Listing[2]
contains the skeleton of the WebAssembly code to which this C code compiles.
The latter shows the branching structure of the WebAssembly code and is an-
notated with comments that define the blocks of code in that structure. It also
includes annotations (labels) that define the instructions that can be branched
to and the destination of a branching instruction.

void bubble(int n, int* data) {
int i, j, temp;

n - 1; i++) {
<n-1i-1; j++) {
if (datal[j] > datalj + 11) {
temp = datalj];
datalj] = datalj + 1];
datal[j + 1] = temp;

for(i = 0; i
for(j = 0;

I = A

Listing 1: C code to implement bubble sort

(func (;6;) (type 6) (param i32 i32)
(local 132 i32 i32 i32 i32 132 i32 i32)
;5 BB O
block ;;label = @1

10
18
19
22
23
31
32
33
34
35

37
57

65
66
70
71
72
73
74

75
86

88
89
90
91
92

J. Shortt et al.

;; BB 1 (deleted 3 lines)
br_if 0 (;e@1;)
;s BB 2 (deleted 7 lines)
loop ;;label = @2
;; BB 3 (deleted 2 lines)
block ;;label = @3
;5 BB 4 (deleted 7 lines)
br_if 0 ;;label = @3
;;, BB 5
loop ;;label = @4
;;, BB 6
block ;;label = @5
;5 BB 7
;; (deleted 20 lines)
br_if 0 ;;label = @5
;; BB 8 (deleted 6 lines)
end
;; BB 9 (deleted 3 lines)
br_if 0 ;;label = 04
;, BB 10
end
;, BB 11
end
;; BB 12 (deleted 10 lines)
br_if 0 ;;label = @2
;5 BB 13
end
;; BB 14
end
;5 BB 15

Listing 2: Outline of WebAssembly code to implement bubble sort

Fig. 1: Basic block control flow diagram for bubble sort

103

104

105

106
107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Bounding the Execution Cost of WebAssembly Functions 5

Figure [I] shows the branching structure of Listing [2] in the form of a control
flow diagram. In this diagram, nodes represent basic blocks (BBs) and edges
are possible execution paths. Red-dashed edges represent backward execution
paths to the beginning of a loop. Figure [2| shows how we can further refine this

[0...2] ' R ! [15]

¥ \
[3...5] Syl [12..13] ||
et s m]r"E" I N N
—

Fig. 2: Super block control flow diagram for bubble sort

block structure by merging consecutive blocks when there is only one code path
through them. In doing so we retain information about the flow of control in
the function and create a higher level control flow diagram with fewer nodes. In
this diagram nodes represent super blocks (SBs) and, again, edges are possible
execution paths. There are two types of superblock: those that do not contain a
loop, shown as a rectangle with a black border, and those that do, shown with
a red dotted border. The term basic block comes from the compiler and static
analysis literature [I3I14]. We define these block types precisely for WebAssembly
in the next section.

Lines 37 through 70 of Listing [2| contain the code that implements the body
of the inner-most loop of bubble sort. Lines of code are deleted in the listing for
presentation purposes. Table column (b) contains all of this code, including the
missing lines from the listing, with line numbers in column (a). In this table n[i]
and m[i] refer to local variable and memory location i, respectively. Column (c)
is the WebAssembly value stack contents after the instruction is executed and any
variable or memory changes that the instruction causes. We use the convention
that the left-most item in the stack is the one most recently added. Lines with
comments in the listing are omitted from the table. To improve readability, we
also convert the label indices in branch instructions to line numbers. For this
table, it is sufficient to know that n is an array containing function parameters
and local variables, and m is an array representing WebAssembly memory.

In summary, this code behaves as follows: in lines 37 through 49 the 2 values
to be compared are loaded into temporary variables, and the loop counter is
updated (line 49), in lines 50 through 65 the two values are swapped if they are
not in the correct order, and in lines 67 through 70 the loop counter is compared
to the loop bound to determine if another loop pass is required. The variable
n[5] is used for the loop counter and is modified only on line 49. The variable
n[4] is used as the loop bound and is not modified in the loop body. Note that
the code fragment uses variables like n[4] that have been previously initialized.

J. Shortt et al.

Table 1: Symbolic execution of bubble sort inner loop and SSA form

(a) Line (b) Instruction (c) Updated stack contents/

Instruction side effects

(d) Equivalent SSA

37 local.get 1 [n[1]] t1 < n[l]

38 local.get 5 [n[5]; n[1]] ta + n[5]

39 i32.comst 2 [2; n[5]; n[1]] t3 + 2

40 i32.shl [(n[5] shl 2); n[1]] t4 < to shl ts

41 i32.add [n[1] + (n[5] shl 2)] ts < ta +t1

42 local.tee 6 [n[1] + (n[5] shl 2)] n[6] < ts
n[6] < n[1] + (n[5] shl 2)

43 i32.load [m[n[1] + (n[5] shl 2)]1] te < mts]

44 local.tee 7 [m[n[1] + (a[5] shl 2)]1] n[7] < te
nl[7] < m[n[1] + (@[5] shl 2)]

45 local.get 1 [n[1]; m[n[1] + (n[5] shl 2)]1] t7 < n[l]

46 local.get 5 [n[5]; n[1]; m[n[1] + (n[5] shl 2)]] ts < n[b]

47 i32.const 1 [1; n[5]; nl[1]; m[n[1] + (n[5] shl 2)]] t9 <+ 1

48 i32.add
49 local.tee 5

[n(5] + 1; nl1]; m[n(1] + (m[5] shl 2)]1] tio < tg + 1o
[n(6] + 1; n[1]; m[n[1] + (a[5] shl 2)]1] n[5] < tio

n[5] < n[5] + 1

50 i32.const 2 [2; n[5] + 1; n[1]; ti1 2
m[n[1] + (a[5] shl 2)]1]

51 i32.shl [((m[5] + 1) shl 2); n[1]; t12 < t10 shl t11
m[n[1] + (n[5] shl 2)]1]

52 i32.add [n[1] + ((n[5] + 1) shl 2); t13 < t11 + t12
m[n[1] + (n[6] shl 2)1]

53 local.tee 8 [n[1] + ((n[5] + 1) shl 2); n[8] + ti3
m[n[1] + (n[5] shl 2)]1]
n[8] < n[1] + ((n[5] + 1) shl 2)

54 i32.load [m[n[1] + ((@[5] + 1) shl 2)]; t14 < m[t13]
m[n[1] + (n[5] shl 2)]1]

55 local.tee 9 [m[n[1] + ((n[5] + 1) shl 2)]1; n[9] < t14
m[n[1] + (n[5] shl 2)]1]
n[9] <« m[((m[5] + 1) shl 2) + n[1]]

56 i32.le_s [m[n[1] + (n[5] shl 2)] < t1s +— t1a < tg
m[n[1] + (@[] + 1) shl 2)]]

57 br_if 67 1 t15

59 local.get 6 [n[6]] tis < n[6]

60 local.get 9 [n[9]; n[6]1] t17 < n[9]

61 i32.store [1 mlti7] < tis
m[n[9]] « n[6]

62 local.get 8 [n[8]] t1s < n[8]

63 local.get 7 [n[7]; n[8]1] tig < n[7]

64 i32.store [1 mltig] < tis
m[n[7]] < n[8]

65 end (]

67 local.get 5 [n[5]] t20 < n[5]

68 local.get 4 [n[4]; n[5]] to1 < nf4]

69 i32.ne [n[5] # n[41] oo ta1 # t20

70 br_if 37 [1 122

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Bounding the Execution Cost of WebAssembly Functions 7

We use symbolic execution and single-assignment form (SSA) [16] to determine
the value of these variables when the loop is entered.

Column (c) of Table [1| can be created by symbolically executing the corre-
sponding WebAssembly code. Symbolic execution is a method of recording the
effects on the machine state symbolically, instruction by instruction, when exe-
cuting a code fragment. It gives us the ability to inspect the state of the virtual
machine at any point in a function’s execution. For example, we can look at a
basic block that ends with a conditional branch instruction and determine sym-
bolically what expression the conditional branch is based on. Symbols shown in
column (c) represent the values of the respective variables when they are placed
on the stack, not subsequently updated values.

Column (d) is an expression of the effect of the corresponding instruction
(from column (b)). It is in SSA form.

We can observe the following facts about the code in the table for the inner
loop of bubble sort:

— The loop tests the condition n[5] # n[4] on line 69 (we can see this on the
value stack) and continues execution via the br_if instruction on line 70
if this condition is true. Thus the variables that determine when this loop
terminates are n[4] and n[5].

— From the instruction side effects in column (c) we see that the variable n[4]
is not modified.

— Similarly, we see that the variable n[5] is modified on line 49 (only), where
it is incremented.

From these observations we can see that the number of times this loop body
will be executed is determined by the values of n[4] and n[5] when the loop
body is entered. In the next section, we describe how we use this information to
determine a bound on the number of loop iterations, and we elaborate on how
this information can be used to determine a bound on execution cost.

3 Approach

In this section we describe our approach to producing bounds on WebAssembly
functions. The Wanalyze tool reads a WebAssembly binary module as its input
and analyzes each of the functions contained in that module. It outputs an
expression, in terms of the function inputs, for an upper bound on the cost of
executing the function.

Note that our cost model assumes that all WebAssembly instructions and all
functions called (in either WebAssembly or native code) take the same amount
of time to execute, allowing us to use the executed instruction count within
a function as a proxy for code execution time. We count this as one unit of
execution cost. While this simplification precludes precise execution bounds,
such bounds are not feasible with WebAssembly in general, due to it being an
execution format designed for portable, optimizing language runtimes; however,
as we show in Section [d] this simplified model is sufficient to calculate consistent
execution bounds.

8 J. Shortt et al.

Algorithm 1 Get SBs from BBs

1: function SBSOrBBs(BBs, SBs, SB,loop_nesting)
2: while BBs # || do

3: BB « car(BBs)
4: BBs < cdr(BBs)
5: // are we beginning a loop?
6: if BB.type = LOOP then
7 // ves, close off the current SB, if any, and start a new one
8: if SB # || then
9: SBs <+ SBs+ SB
10: end if
11: return SBsOfBBs(BBs,SBs, [BB],loop_nesting + 1)
12: else
13: // are we ending a loop?
14: if BB.type = END and BB.nesting = loop_nesting then
15: // ves, close off the SB and start a new SB
16: SBs < SBs+ (SB + BB)
17: SB.children + SBsOFBBs(SB,], [], loop-nesting)
18: SB +]
19: loop_nesting < loop_nesting — 1
20: else
21: // Does this BB have predecessors not in the current SB?
22: if BB.predecessors\ SB # [] then
23: // Yes, start a new SB
24: return SBsO fBBs(BBs,SBs+ SB, [BB],loop-nesting)
25: else
26: // No need to start a new SB
27: SB + SB+ BB
28: end if
29: end if
30: end if

31: end while

32: // close off the current SB, if any
33: if SB # [] then

34: SBs <+ SBs+ SB

35: end if

36: return SBs

37: end function

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Bounding the Execution Cost of WebAssembly Functions 9

Basic Blocks We first generate a set of basic blocks [14] for each function based
on the following definition:

Definition 1. (Basic Blocks of a WebAssembly function) The (set of) Basic
Blocks (BBs) of a WebAssembly function are consecutive lines of code with the
following properties:

— each instruction in the body of the function is contained in exactly one BB,

— each BB ends with either a block, loop, if, else, end, br, br_if,
br_table, return, unreachable instruction and contains no other occur-
rences of any of these instructions.

Because a BB contains no conditional execution paths its cost can be determined
precisely as the number of instructions in the BB.

Super Blocks Aggregating BBs into Super Blocks (SBs) as we did in Figure
allows us to analyze loop structures more readily. In our definition, an SB is
composed of consecutive BBs, and, in the case of nested loops, other SBs.

Definition 2. (Super Block of a WebAssembly function) The conditions that
determine how BBs are assigned to SBs are as follows:

— C1 There is an SB for each loop/end structure block in the function. It
contains the BBs of that code fragment beginning with the first BB after
the loop instruction and ending with, and including, the BB containing the
associated end instruction.

— C2 A function’s flow of execution can only enter an SB at the first BB in
the SB.

— 038 Consecutive BBs with no loops appear in the same SB subject to C2.

Algorithm [1] describes how the list of SBs is determined. In addition to the
code, each basic block has some attributes, including its type (e.g., LOOP, END),
its nesting level, which indicates the depth of the loop (if any) that it is contained
in, and its predecessors, which include all previous basic blocks. A single pass is
made through the basic blocks that make up the function, emitting super blocks
whenever the conditions to create a new one or end the current one are satisfied.
These conditions are on lines 6, 14, and 21 of the algorithm. Their meaning is
as follows:

— line 6: the first basic block of a loop has been reached,
— line 14: the end basic block of a loop has been reached,
— line 21: a basic block with multiple entry points has been reached.

Code Path Generation If an SB has no loops we can bound its cost as: the
mazimum cost over all paths from the root of the control flow graph to a leaf
node where we consider the cost of a path to be the sum of the cost of the BBs
on that path. That is, we consider all possible execution paths through the SB

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

10 J. Shortt et al.

and take the maximum cost of those execution paths as our upper bound on the
SB cost.

In general we evaluate the cost of each code path to compute a bound on the
function cost.

Symbolic Execution and Static Single-Assignment (SSA) Form Sym-
bolic execution models the effects of code on machine state symbolically, in-
struction by instruction. It gives us the ability to inspect the state of the virtual
machine at any point in a function’s execution. Column (c) of Table|l|shows the
results of symbolic execution for our example.

We can use symbolic execution to determine the condition under which a loop
terminates. To find a bound on the number of loop iterations we need another
technique that allows us to symbolically evaluate the values of the variables in
the condition. To do this we perform program slicing [27] on the SSA. Column
(d) of Table [1] shows this result for our example.

Approach to Determining Loop Execution Cost As mentioned, the execu-
tion cost of an SB is bounded by the cost of the maximum cost path. There is no
general solution to this problem (otherwise we would have a solution to the halt-
ing problem, as mentioned earlier). Our approach is based on rules, recognizing
specific patterns in loop structures.

A loop body is an SB, thus giving us a bound on the execution of a loop
body. To arrive at an expression for a bound on a loop, we must determine a
bound on the number of iterations. We then combine these two bounds to arrive
at an expression for a bound on the loop execution cost, which will generally
include the parameters of the function. We need to know the following;:

— L1: conditions that cause the loop to exit;

— L2: variables that are used in evaluating these conditions;

— L3: initial values of these variables when the loop is entered;
— L4: how the variables are updated in the loop.

To determine L1, the tool determines all possible paths through the body of the
loop that either exit the loop, or return to the top of the loop. The tool then
symbolically executes these paths to determine the contents of the value stack
when a looping condition is evaluated. Since we want conditions that cause the
loop to exit, this looping condition is negated if control returns to the top of the
loop. This produces a list of loop conditions, one for each path through the loop
body. We can then parse these conditions to determine which variables they use,
which gives us L2. From line 69 in the example, we can see that the variables in
this case are n[4] and n[5]. For each variable, we can then create the SSA form
for all function execution paths to the loop SB. We can then simplify these SSA
to get the possible values of the variables at loop entry. This gives us L3. Finally,
we can create a SSA form for each of the variables, but this time simplify it over
all execution paths from the first BB of the loop to the BB of their associated
condition. This will give us L4.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

282

283

284

285

286

287

288

289

Bounding the Execution Cost of WebAssembly Functions 11

This result is then used to apply a set of rules depending on the condi-
tion and the manner in which the condition variables are updated to determine
the number of loop iterations. In our tests, we found that a small number of
rules, usually based on observing a loop counter representing the size of a data
structure or a static loop limit, allowed most loop constructs to be analyzed to
produce a bound on the number of iterations. We believe that this is due to
the fact that the structured control flow found in the source language (e.g. C or
Rust) translates readily into WebAssembly.

Cost Analysis We compose the analyses based on bounds on the costs of BBs,
SBs, and loops using code path generation, symbolic execution, and SSA to
produce a bound on the execution cost of the function. In describing these costs,
we use the phrase SB path to mean an execution path that is made up of SBs.
We say linear SB path to mean a path that does not loop. The SBs that make
up the path may contain loops, but at the level of the path there are no loops.
Similarly a BB path is an execution path that is made up of BBs and a linear
BB path is a path with no loops. We also introduce some notation:

— We use f to denote a function, X to denote the inputs to the function, sp
for an SB path, both s and sc denote an SB, bp a BB path and b a BB.

— For an SB s, let S(s) be the set of all linear SB paths of SBs in s that start
at the first SB of s and exit s. That is, we restrict S(s) to contain only paths
that are non-looping and are made up of SBs contained in s. We extend this
notation to functions; S(f) denotes all linear SB paths through the function
I

— Let nS(sp) be the set of SBs without a loop that are on the SB path sp.

— Let 1S(sp) be the set of SBs with a loop that are on the SB path sp

— For a looping SB s, let N (s, X) be a bound on the number of times the loop
will iterate given function inputs X.

— Let B(s) be the set of all linear BB paths of the SB s.

— Let sy be the SB that contains all of f.

With this notation, we can express the following equalities and inequalities for
bounding the cost of a function:

costp(f,X) < max cost,s(sp, X 1
FULX) < max costys(sp. X))
costps(sp, X) < Z costs(s) + Z [max costps(sp’y X)] * N(s, X)

senS(sp) s€lS(sp) sp'€S(s)
(2)
t < t,5(b 3
costs(s) < max costy () 0

cost,p(bp) = Z costp(b) (4)

bebp

costp(b) = number of instructions in BB b (5)

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

12 J. Shortt et al.

In these equations, the subscript F' is for the cost of the function, pS for the
cost of an SB path, S for an SB, pB for a BB path, and B for a BB. The
equations can be summarized as follows: (1) the cost of a function is bounded
by the maximum of the cost of all SB paths through the function; (2) the cost
of an SB path is bounded by the sum of the cost of each non-looping SBs in the
path plus, inductively, the cost of each of the looping SBs times the number of
loop iterations; (3) the cost of an SB is bounded by the maximum cost of all BB
paths of the SB; (4) the cost of a BB path is the sum of the cost of the BBs in
the path; and (5) the cost of a BB is the number of instructions in the BB.

Objects in Memory A case that warrants specific mention is that of objects
in memory and functions that operate on those objects. Generally if a function
contains code that loops over an object structure and has a loop termination
condition that depends only on that data in the object, then Wanalyze will not
be able to produce a bound for that function.

4 Test Results

We discuss three experiments that we have carried out, followed by an analysis
of the results.

Bubble Sort The focus of the first experiment was the bubble sort code de-
scribed in Section [2] Thus, we start with a relatively simple test case containing
both a nested loop and conditional execution paths. We chose this example to
determine if Wanalyze could successfully produce a prediction for the number
of instructions to be executed and to determine how accurate that prediction
was compared to actual measurements.

This experiment was run in two parts. The first part involved running the
bubble sort WebAssembly code using the wasmtime [I1] WebAssembly runtime.
This runtime has the ability to instrument WebAssembly code to measure the
amount of “fuel” the code consumes when executed. Conveniently, it measures
fuel as the number of instructions executed with the exception of nop, drop,
block, and loop instructions.

The bubble sort WebAssembly function takes as input a fixed length array of
32 bit integers and sorts them in place. It is well known that the performance of
bubble sort is dependent on the composition of the data. Worst case performance
occurs when the input data are ordered in the complete reverse of the sorted data.
We ran two different tests so that we could compare results. The first test was
with the data in this worst-case reverse-sorted order; the second test was done
with the data in random order. Ten runs with input arrays sized between 10,000
and 100,000 in increments of 10,000 were run. In order to run this WebAssembly
code with wasmtime, it was necessary to write “glue” code in Rust that creates
the data. This code loads the WebAssembly module containing the bubble sort,
runs it and reports on the amount of fuel consumed.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Bounding the Execution Cost of WebAssembly Functions 13

The second part of the experiment involved running Wanalyze on the Web-
Assembly bubble sort function. The analysis was successful and produced the
following polynomial, which is typical of the general format produced:

1
5(31n? + 11n — 20)
as the bound on the number of instructions that would be executed when sorting

n items. This agrees with the well-known fact that bubble sort takes O(n?) time
to execute.

Table 2: Bubble sort bound vs. actual - wasmtime fuel

Items Wanalyze Worst-case Random
(K) Bound (M) Actual (M) Difference Actual (M) Difference
10 1,595 1,550 2.90% 1,401 13.85%
20 6,800 6,200 1.61% 5,601 12.48%

30 14,105 13,950 1.11% 12,594 12.00%
40 25,010 24,800 0.85% 22,401 11.65%
50 39,015 38,750 0.68% 35,000 11.47%
60 56,120 55,800 0.57% 50,397 11.36%
70 76,325 75,950 0.49% 68,625 11.22%
80 99,630 99,200 0.43% 89,597 11.20%
90 126,035 125,550 0.39% 113,400 11.14%
100 155,540 155,000 0.35% 139,990 11.11%

Table [2| contains the results of both parts of the experiment. The column
titled “Wanalyze Bound” shows the bound that Wanalyze produced for the
number of instructions (in millions) executed to sort that many items. The next
column “Worst-case Actual” is the number of instructions reported by wasm-
time when sorting a set of items that is initially in the complete reverse of sorted
order. The column “Random Actual” is the number of instructions, but this time
the set to be sorted is initially in random order. The two percentage columns are
the differences between the Wanalyze bound and the actual measured result in
wasmtime.

Dhrystone Benchmark The second experiment followed a similar procedure
as the first, but this time the WebAssembly code generated by the emscripten
toolchain for version 2.1 of the Dhrystone benchmark [20] was analyzed. It is
expected that the Dhrystone benchmark performance is linear in the number of
iterations. Inspection of the code verifies that this is the case and Wanalyze

produces a cost bound of:
1033n + 2578

where n is the number of Dhrystone iterations performed. See Table[3]for detailed
measurements.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

14 J. Shortt et al.

In this case no glue layer code was necessary because the Dhrystone program
has no input data. The number of iterations to be performed is a parameter that
is compiled into the program.

The results in Table [3] follow a similar format to those for bubble sort. The
difference is that since there is no input data to consider, it was only necessary
to run a single test for a given number of iterations.

Table 3: Dhrystone predicted / actual
wasmtime Wanalyze

Iterations Actual Bound Difference
12,088 7,834 12,487 59.39%
15,110 9,792 15,609 59.41%

18,666 12,100 19,282 59.36%
20,336 13,180 21,007 59.39%
31,110 20,183 32,137 59.23%

MUSL C Library, AutoCAD application The third experiment consisted of
running Wanalyze on the WebAssembly code for the MUSL C runtime library
[23] and the AutoCAD application [8]. Each of these is a large code base, and
so they demonstrate the ability of Wanalyze to scale. It was necessary to first
compile the MUSL library to WebAssembly. AutoCAD is available for download
as a WebAssembly module.

The entire MUSL library contains over 58,000 lines of code (LOC) in C which,
when compiled, results in over 1.26 million lines of WebAssembly code contained
in over 14,000 distinct functions. With an elapsed time of 53 minutes, this results
in a rate of over 1000 lines of C code analyzed per minute and a rate of 23,000
lines of WebAssembly analyzed per minute. Wanalyze was able to analyze more
than 94% of all functions with failure occurring in cases where the number of
paths through the function exceeded the built-in limit of one million paths. This
limit is used to limit the running time of the analysis and can be extended.

AutoCAD is an order of magnitude larger than the MUSL C library, when
measured by lines of WebAssembly code or number of functions. Comparatively,
the elapsed time required to analyze AutoCAD is nearly linear in those metrics.

Table 4: MUSL C library, AutoCAD application
C LOC WebAssembly LOC # functions Success rate Elapsed time
MUSL 58,237 1,267,725 14,329 94.6% 53 minutes
AutoCAD - 22,641,000 93,664 99.9% 481 minutes

367

368

369

370

371

372

373

374

375

376

377

378

379

380

382

383

384

385

386

387

388

389

390

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

Bounding the Execution Cost of WebAssembly Functions 15

Analysis As demonstrated in the final experiment, the performance of Wan-
alyze scales with larger bodies of code. This scaling is driven by these design
choices:

— Wanalyze makes a single pass through the WebAssembly binary.

— The algorithms to produce its primary data structures, BBs and SBs, are
linear in the number of instructions.

— The number of BBs and SBs produced for a given function is generally an
order of magnitude less than the number of instructions in the function.

— The analysis algorithms, symbolic execution, and SSA generation operate in
time that is linear in the number of paths through the function.

With both bubble sort and Dhrystone, the bound produced by Wanalyze
is indeed a bound, in that it is greater than the measured actual value. Also,
for both the difference measured is a similar percentage for tests with the same
input data. However, this percentage varies across different tests and input data.

These results meet the objective for bounds to be considered reasonable
that we set out in the introduction. Execution costs do not exceed the bound,
and the bound has the same computational complexity as the function being
analyzed. However, we must ask why does the Wanalyze bound differ from the
actual observed instruction counts? And, why does this difference vary between
applications and data sets? For example, bubble sort with random data has a
difference of 14% (rounded), but Dhrystone has a difference of 59%.

The primary reason for these differences is that Wanalyze necessarily chooses
the most costly path when evaluating alternative costs in a super block or basic
block. In practice, this is a conservative approach because it will often be the case
that a less costly path is taken. This means that the accuracy of Wanalyze’s
bound will depend on how often the costliest path is taken.

This is also an explanation for the differences between applications. Not only
do the applications that have lower cost paths that contribute to the Wanalyze
estimate being higher, but also there are differences in the path structure of
the functions in the applications. In particular, there is a big difference between
the super block control flow diagrams for two functions. Thus, the impact of
lower-cost paths will be different between the applications.

The same reasoning also explains why applications that run on different data
will have different results. The effect of the lower cost paths will be different when
different input data is used.

5 Related Work

The problem of automatically bounding or estimating the cost of execution of
a program using static analysis methods has been well studied, starting with
the work of Wegbreit [26]. In a series of papers [2/3l6], Albert et al. described
their work on solving this problem for Java bytecode. Wegbreit’s basic method
of analysis is used but aspects of Java bytecode created additional challenges
such as loop detection. A notable contribution of these papers is a theoretical

409

410

411

412

413

414

415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

442

443

444

445

446

447

448

449

450

451

16 J. Shortt et al.

framework for formulating and solving the recurrence relations that are produced
by the analysis. Determining a bounding on the cost of executing a loop is a core
challenge; lexicographic ranking functions [II2/10] are widely used both to prove
loop termination and to determine loop costs.

Some authors [7IT922]24] focus on the problem of determining the algorith-
mic complexity of a function and choose to test their solution against well-known
algorithms with well-known complexity. Solutions also include consideration of
amortized algorithmic costs which can improve precision. The example given in
[19] that demonstrates this benefit is the functional queue, which performs de-
queue operations in constant amortized time. The language used in that paper
is OCaml. Other languages, such as Raml (resource aware ML) [I8], and Solidity
(a language for Ethereum smart contracts) [5] have been studied as well.

Work in the WCET domain [915] has focused on the analysis of loops. We
demonstrate that aspects of WebAssembly simplify this problem to some extent.

Almost all of the papers mentioned performed experiments using specific
data sets comprised of code that was analyzed. Our general observation is that,
like the functions in the real-world applications that we analyzed, the test cases
consist of a small number of small to medium sized functions or programs. The
examples tested in [12] represent a particularly challenging set of loop constructs
that are atypical of loop constructs we saw when analyzing real world programs.
In contrast, we have taken an empirical approach of analyzing well-known func-
tions, particularly those in an implementation of the standard C library imple-
mentation MUSL.

6 Conclusion

As we have shown, WebAssembly provides a new opportunity to revisit the prob-
lem of bounding the execution cost of a program. In particular, it has features
that simplify cost analysis such as structured control flow, which means that it
is not necessary to perform loop detection on the input program and translate it
to an intermediate, structured form. In addition, WebAssembly only has scalar
data types. As a consequence, expensive size analysis methods described in the
literature can be greatly simplified.

As future work, we can extend our results to determine a bound on the cost
of a whole program, which includes functions that call other functions in the
module as well as imported functions, assuming that the WebAssembly hosting
environment will provide the cost of those functions if required. The cost bound
of a non-recursive function call will be an expression based on that function’s
input, which will, in turn, be expressed in terms of the inputs to the calling func-
tion. For both recursive and non-recursive calls, we can derive a set of recurrence
relations between the costs of these functions. The work by Albert et al. [2I3/416]
describes how these recurrence relations can be solved. Future work also includes
correctness proofs of our results, which would provide greater assurances in our
methods. A mechanization of such a proof would also allow us to add proofs of
performance bounds to analyzed functions.

452

453

455

456

457

458

459

460

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Bounding the Execution Cost of WebAssembly Functions 17

References

10.

11.

12.

13.

14.

15.

Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Static Analysis: 15th Inter-
national Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings
15. pp. 221-237. Springer, Berlin Heidelberg (2008)

Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. Journal of automated reasoning 46, 161-203 (2011)

Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Costa: Design and
implementation of a cost and termination analyzer for java bytecode. In: Formal
Methods for Components and Objects: 6th International Symposium, FMCO 2007,
Amsterdam, The Netherlands, October 24-26, 2007, Revised Lectures 6. pp. 113—
132. Springer, Berlin Heidelberg (2008)

Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science 413(1), 142—
159 (2012)

Albert, E., Correas, J., Gordillo, P., Roman-Diez, G., Rubio, A.: Don’t run on
fumes—parametric gas bounds for smart contracts. Journal of Systems and Soft-
ware 176, 110923 (2021)

Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost anal-
ysis. In: Verification, Model Checking, and Abstract Interpretation: 12th Interna-
tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-
ings 12. pp. 38-53. Springer, Berlin Heidelberg (2011)

Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Static Analy-
sis: 17th International Symposium, SAS 2010, Perpignan, France, September 14-16,
2010. Proceedings 17. pp. 117-133. Springer, Berlin Heidelberg (2010)

AutoCAD: Roundup: The AutoCAD Web App at Google I/O 2018.
https://blogs.autodesk.com/autocad /autocad-web-app-google-i0-2018/ (2018),
accessed December, 2022

Blazy, S., Maroneze, A., Pichardie, D.: Formal verification of loop bound estimation
for wcet analysis. In: Working Conference on Verified Software: Theories, Tools,
and Experiments. pp. 281-303. Springer (2013)

Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Com-
puter Aided Verification: 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005. Proceedings 17. pp. 491-504. Springer, Berlin Hei-
delberg (2005)

Bytecode Alliance: wasmtime - A Standalone Runtime for WebAssembly.
https://github.com/bytecodealliance/wasmtime (2022), accessed December, 2022
Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 467-478. ACM, New York, NY, USA (2015)
Cocke, J.: Global common subexpression elimination. In: Proceedings of a sympo-
sium on Compiler optimization. pp. 20-24. ACM, New York NY (1970)

Cooper, K.D., Torczon, L.: Engineering a Compiler. Elsevier, Burlington MA
(2011)

Cullmann, C., Martin, F.: Data-flow based detection of loop bounds. In: 7th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET’07). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik (2007)

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

532

533

534

535

536

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Shortt et al.

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
pp- 25-35. ACM, New York, NY (1989)

Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with WebAssembly. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 185-200. ACM, New York NY (2017)

Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analy-
sis. In: Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. pp. 357-370. ACM, New York NY (2011)
Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for
OCaml. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. pp. 359-373. ACM, New York NY (2017)

Keith S. Thompson: Dhrystone v2.1. https://github.com/Keith-S-
Thompson/dhrystone/tree/master/v2.1 (2022), accessed December, 2022

Lucas, S.: The origins of the halting problem. Journal of Logical and Algebraic
Methods in Programming 121, 100687 (2021)

Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: Tools and Algorithms for the Construction and
Analysis of Systems: 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27-April 1, 2021, Proceedings, Part
1. pp. 250-269. Springer, Berlin Heidelberg (2021)

musl: musl libe. https://musl.libc.org/ (2023), accessed May, 2023

Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Computer Aided Verification: 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26. pp. 745-761.
Springer, Berlin Heidelberg (2014)

WebAssembly Community Group: WebAssembly Introduction.
https://webassembly.github.io/spec/core/intro/introduction.html ~ (2020), ac-
cessed December, 2022

Wegbreit, B.: Mechanical program analysis. Communications of the ACM 18(9),
528-539 (1975)

Weiser, M.: Program slicing. IEEE Transactions on software engineering SE-10(4),
352-357 (1984)

	Bounding the Execution Cost of WebAssembly Functions

