
Bounding the Execution Cost of WebAssembly1

Functions2

John Shortt1, Amy Felty1, and Anil Somayaji23

1 University of Ottawa, Ottawa ON, Canada4

[jshor018,afelty]@uottawa.ca5

2 Carleton University, Ottawa ON Canada soma@scs.carleton.ca6

Abstract. Bounds on worst-case execution time can improve system7

reliability and security in a variety of contexts. Past work on bounding8

execution time has faced challenges due to the lack of formal specifica-9

tions of mainstream computing environments. WebAssembly is a low-10

level language originally designed for efficient execution in browsers that11

is used today in edge computing and other environments. WebAssem-12

bly has been formally specified and has a mechanized soundness proof,13

greatly facilitating the formal analysis of WebAssembly programs. Here,14

we present a new tool for bounding the worst-case execution time of Web-15

Assembly functions that is based on the formalization of WebAssembly.16

We have tested our tool on significantly more and larger functions than17

those studied in previous work (over 107,000 functions, with the longest18

function being 4156 lines of WebAssembly from 392 lines of C), and it19

successfully and efficiently analyzed the vast majority of functions tested.20

Progress in our tool suggests the feasibility of calculating worst-case ex-21

ecution bounds on large real-world code bases.22

Keywords: Program Analysis, Execution Cost Analysis, Formal Verification,23

WebAssembly24

1 Introduction25

In the context of web applications, edge computing, digital contracts, and nu-26

merous rich document formats, systems execute untrusted code. If not properly27

contained, such code can consume arbitrary resources, resulting in denials of28

service, battery exhaustion, information theft, and application and host compro-29

mises. Language and operating system sandboxes can limit the potential damage30

of malicious code, but to accommodate increasingly complex applications, such31

sandboxes must allow code to have significant CPU and memory resources. Fixed32

limits can reduce but not eliminate the risk of giving arbitrary code access to33

CPU and memory resources. Worst-case execution time (WCET), however, of-34

fers an alternative defense strategy: by calculating the worst-case execution time35

of a program in advance, it becomes possible to decide not to run code if it will36

consume too many resources. As we know, this problem cannot be solved in37

2 J. Shortt et al.

the general case (otherwise we would have a solution to the halting problem38

[21]), but we also know that formally defined systems can be reasoned about39

with sophisticated tools that allow us to make interesting conclusions about the40

behavior of those systems.41

Today WebAssembly [17,25] is the leading technology for untrusted code42

written in arbitrary programming languages. WebAssembly is widely deployed43

in web browsers, is an enabling technology for edge computing, and is finding44

applications in other domains. Two properties in particular contribute to offering45

a path toward bounding the execution time of programs: it is low level and46

it is formally specified. With regard to the first property, WebAssembly can47

serve as a compilation target much like CPU-specific assembly languages and48

bytecode languages like the Java Virtual Machine (JVM) and Common Language49

Runtime (CLR). WebAssembly’s appeal comes from highly sandboxed yet very50

efficient runtimes, something that is not generally available for other compiler51

targets. The second key property, the fact that WebAssembly has been formally52

specified, greatly facilitates program analysis. The formal specification assures53

that WebAssembly has no undefined behavior, and its program control flow54

mechanisms use the ideas of structured programming in a way that also simplifies55

reasoning about them. Other compiler targets have been formalized; however,56

these formalizations are post-hoc and often only approximate the functioning of57

the language in practice. In contrast, WebAssembly has been formally specified58

from the beginning, thus making it an important application area for program59

analysis techniques both because of potential practical applications and because60

it has been designed to facilitate formal program analysis.61

Our tool, which we call Wanalyze, and is available on GitHub3, shows the62

potential of WebAssembly to simplify formal program analysis, for example by63

eliminating the need to detect loops (they are evident in the structured control64

flow) and reducing the need for directly analyzing complex data structures (Web-65

Assembly has few data types and simple data structures), while still allowing66

large-scale production code to be analyzed. Further, because WebAssembly itself67

is formally specified, our results apply not to idealized execution environments68

(as is often the case for C variants), but to production runtimes.69

As a step towards this goal, we have chosen to focus on analyzing individual70

functions rather than entire programs. Specifically, the scope of our work is the71

static analysis of each function in a WebAssembly module to determine a bound72

on its cost of execution. As we discuss later, previous work in the literature73

shows how this can be extended to whole programs [2,3,4,6]. Although we do74

not fully handle whole programs, we are able to analyze functions that are much75

larger than the programs analyzed in previous work (up to four times larger)76

and for over 107,000 functions from real-world code bases, giving us a breadth77

of experience significantly beyond that of past work.78

In this paper we present the methods we have developed for calculating the79

worst-case cost of WebAssembly functions and our efforts to validate our meth-80

ods. Wanalyze is implemented in OCaml, consists of approximately 5000 lines81

3 https://www.github.com/jsCarleton/wanalyze

https://www.github.com/jsCarleton/wanalyze

Bounding the Execution Cost of WebAssembly Functions 3

of code, and is licensed under the Apache 2.0 license and available for download.82

We have evaluated Wanalyze on WebAssembly programs and libraries of vary-83

ing complexity and have found that it is able to successfully produce execution84

bounds for the vast majority of these functions, while being able to analyze thou-85

sands of lines of code per second in our tests run on relatively modest hardware.86

The contributions of this paper consist of the software tool,Wanalyze, which87

is the first published application that can bound the worst-case cost of Web-88

Assembly functions, demonstrating the feasibility of bounding real-world code89

with the analysis of over 107,000 functions.90

In the rest of this paper, Section 2 contains a motivating example for the91

techniques that we use. Section 3 contains details of our analysis techniques. In92

Section 4 we describe the experimental tests that have been performed and their93

results. We discuss related work in Section 5. Section 6 concludes.94

2 Example95

By way of example, we examine the WebAssembly code for the inner loop of a96

bubble sort implementation. Listing 1 contains a C implementation and Listing 297

contains the skeleton of the WebAssembly code to which this C code compiles.98

The latter shows the branching structure of the WebAssembly code and is an-99

notated with comments that define the blocks of code in that structure. It also100

includes annotations (labels) that define the instructions that can be branched101

to and the destination of a branching instruction.102

1 void bubble(int n, int* data) {

2 int i, j, temp;

3
4 for(i = 0; i < n - 1; i++) {

5 for(j = 0; j < n - i - 1; j++) {

6 if(data[j] > data[j + 1]) {

7 temp = data[j];

8 data[j] = data[j + 1];

9 data[j + 1] = temp;

10 }

11 }

12 }

13 }

Listing 1: C code to implement bubble sort

1 (func (; 6 ;) (type 6) (param i32 i32)

2 (local i32 i32 i32 i32 i32 i32 i32 i32)

3 ;; BB 0

4 block ;;label = @1

4 J. Shortt et al.

5 ;; BB 1 (deleted 3 lines)

9 br_if 0 (; @1 ;)

10 ;; BB 2 (deleted 7 lines)

18 loop ;;label = @2

19 ;; BB 3 (deleted 2 lines)

22 block ;;label = @3

23 ;; BB 4 (deleted 7 lines)

31 br_if 0 ;;label = @3

32 ;; BB 5

33 loop ;;label = @4

34 ;; BB 6

35 block ;;label = @5

36 ;; BB 7

37 ;; (deleted 20 lines)

57 br_if 0 ;;label = @5

58 ;; BB 8 (deleted 6 lines)

65 end

66 ;; BB 9 (deleted 3 lines)

70 br_if 0 ;;label = @4

71 ;; BB 10

72 end

73 ;; BB 11

74 end

75 ;; BB 12 (deleted 10 lines)

86 br_if 0 ;;label = @2

87 ;; BB 13

88 end

89 ;; BB 14

90 end

91 ;; BB 15

92)

Listing 2: Outline of WebAssembly code to implement bubble sort

E0 1

2

3

15

14

13

4

5

6

12

11

10
7 9

8

br_if

br_if

br_if

~br_if

~br_if

~br_if

~br_if

~br_if

loop
loop

end

block

block

block

br_if

br_if

end
end

end

end

end

Fig. 1: Basic block control flow diagram for bubble sort

Bounding the Execution Cost of WebAssembly Functions 5

Figure 1 shows the branching structure of Listing 2 in the form of a control103

flow diagram. In this diagram, nodes represent basic blocks (BBs) and edges104

are possible execution paths. Red-dashed edges represent backward execution105

paths to the beginning of a loop. Figure 2 shows how we can further refine this

Fig. 2: Super block control flow diagram for bubble sort

106

block structure by merging consecutive blocks when there is only one code path107

through them. In doing so we retain information about the flow of control in108

the function and create a higher level control flow diagram with fewer nodes. In109

this diagram nodes represent super blocks (SBs) and, again, edges are possible110

execution paths. There are two types of superblock: those that do not contain a111

loop, shown as a rectangle with a black border, and those that do, shown with112

a red dotted border. The term basic block comes from the compiler and static113

analysis literature [13,14]. We define these block types precisely for WebAssembly114

in the next section.115

Lines 37 through 70 of Listing 2 contain the code that implements the body116

of the inner-most loop of bubble sort. Lines of code are deleted in the listing for117

presentation purposes. Table 1, column (b) contains all of this code, including the118

missing lines from the listing, with line numbers in column (a). In this table n[i]119

and m[i] refer to local variable and memory location i, respectively. Column (c)120

is the WebAssembly value stack contents after the instruction is executed and any121

variable or memory changes that the instruction causes. We use the convention122

that the left-most item in the stack is the one most recently added. Lines with123

comments in the listing are omitted from the table. To improve readability, we124

also convert the label indices in branch instructions to line numbers. For this125

table, it is sufficient to know that n is an array containing function parameters126

and local variables, and m is an array representing WebAssembly memory.127

In summary, this code behaves as follows: in lines 37 through 49 the 2 values128

to be compared are loaded into temporary variables, and the loop counter is129

updated (line 49), in lines 50 through 65 the two values are swapped if they are130

not in the correct order, and in lines 67 through 70 the loop counter is compared131

to the loop bound to determine if another loop pass is required. The variable132

n[5] is used for the loop counter and is modified only on line 49. The variable133

n[4] is used as the loop bound and is not modified in the loop body. Note that134

the code fragment uses variables like n[4] that have been previously initialized.135

6 J. Shortt et al.

Table 1: Symbolic execution of bubble sort inner loop and SSA form
(a) Line (b) Instruction (c) Updated stack contents/ (d) Equivalent SSA

Instruction side effects

37 local.get 1 [n[1]] t1 ← n[1]
38 local.get 5 [n[5]; n[1]] t2 ← n[5]
39 i32.const 2 [2; n[5]; n[1]] t3 ← 2
40 i32.shl [(n[5] shl 2); n[1]] t4 ← t2 shl t3
41 i32.add [n[1] + (n[5] shl 2)] t5 ← t4 + t1
42 local.tee 6 [n[1] + (n[5] shl 2)] n[6]← t5

n[6] ← n[1] + (n[5] shl 2)

43 i32.load [m[n[1] + (n[5] shl 2)]] t6 ← m[t5]
44 local.tee 7 [m[n[1] + (n[5] shl 2)]] n[7]← t6

n[7] ← m[n[1] + (n[5] shl 2)]

45 local.get 1 [n[1]; m[n[1] + (n[5] shl 2)]] t7 ← n[1]
46 local.get 5 [n[5]; n[1]; m[n[1] + (n[5] shl 2)]] t8 ← n[5]
47 i32.const 1 [1; n[5]; n[1]; m[n[1] + (n[5] shl 2)]] t9 ← 1
48 i32.add [n[5] + 1; n[1]; m[n[1] + (n[5] shl 2)]] t10 ← t8 + t9
49 local.tee 5 [n[5] + 1; n[1]; m[n[1] + (n[5] shl 2)]] n[5]← t10

n[5] ← n[5] + 1

50 i32.const 2 [2; n[5] + 1; n[1]; t11 ← 2
m[n[1] + (n[5] shl 2)]]

51 i32.shl [((n[5] + 1) shl 2); n[1]; t12 ← t10 shl t11
m[n[1] + (n[5] shl 2)]]

52 i32.add [n[1] + ((n[5] + 1) shl 2); t13 ← t11 + t12
m[n[1] + (n[5] shl 2)]]

53 local.tee 8 [n[1] + ((n[5] + 1) shl 2); n[8]← t13
m[n[1] + (n[5] shl 2)]]

n[8] ← n[1] + ((n[5] + 1) shl 2)

54 i32.load [m[n[1] + ((n[5] + 1) shl 2)]; t14 ← m[t13]
m[n[1] + (n[5] shl 2)]]

55 local.tee 9 [m[n[1] + ((n[5] + 1) shl 2)]; n[9]← t14
m[n[1] + (n[5] shl 2)]]

n[9] ← m[((n[5] + 1) shl 2) + n[1]]

56 i32.le s [m[n[1] + (n[5] shl 2)] ≤ t15 ← t14 ≤ t6
m[n[1] + ((n[5] + 1) shl 2)]]

57 br if 67 [] t15
59 local.get 6 [n[6]] t16 ← n[6]
60 local.get 9 [n[9]; n[6]] t17 ← n[9]
61 i32.store [] m[t17]← t16

m[n[9]] ← n[6]

62 local.get 8 [n[8]] t18 ← n[8]
63 local.get 7 [n[7]; n[8]] t19 ← n[7]
64 i32.store [] m[t19]← t18

m[n[7]] ← n[8]

65 end []

67 local.get 5 [n[5]] t20 ← n[5]
68 local.get 4 [n[4]; n[5]] t21 ← n[4]
69 i32.ne [n[5] ̸= n[4]] t22 ← t21 ̸= t20
70 br if 37 [] t22

Bounding the Execution Cost of WebAssembly Functions 7

We use symbolic execution and single-assignment form (SSA) [16] to determine136

the value of these variables when the loop is entered.137

Column (c) of Table 1 can be created by symbolically executing the corre-138

sponding WebAssembly code. Symbolic execution is a method of recording the139

effects on the machine state symbolically, instruction by instruction, when exe-140

cuting a code fragment. It gives us the ability to inspect the state of the virtual141

machine at any point in a function’s execution. For example, we can look at a142

basic block that ends with a conditional branch instruction and determine sym-143

bolically what expression the conditional branch is based on. Symbols shown in144

column (c) represent the values of the respective variables when they are placed145

on the stack, not subsequently updated values.146

Column (d) is an expression of the effect of the corresponding instruction147

(from column (b)). It is in SSA form.148

We can observe the following facts about the code in the table for the inner149

loop of bubble sort:150

– The loop tests the condition n[5] ̸= n[4] on line 69 (we can see this on the151

value stack) and continues execution via the br if instruction on line 70152

if this condition is true. Thus the variables that determine when this loop153

terminates are n[4] and n[5].154

– From the instruction side effects in column (c) we see that the variable n[4]155

is not modified.156

– Similarly, we see that the variable n[5] is modified on line 49 (only), where157

it is incremented.158

From these observations we can see that the number of times this loop body159

will be executed is determined by the values of n[4] and n[5] when the loop160

body is entered. In the next section, we describe how we use this information to161

determine a bound on the number of loop iterations, and we elaborate on how162

this information can be used to determine a bound on execution cost.163

3 Approach164

In this section we describe our approach to producing bounds on WebAssembly165

functions. The Wanalyze tool reads a WebAssembly binary module as its input166

and analyzes each of the functions contained in that module. It outputs an167

expression, in terms of the function inputs, for an upper bound on the cost of168

executing the function.169

Note that our cost model assumes that all WebAssembly instructions and all170

functions called (in either WebAssembly or native code) take the same amount171

of time to execute, allowing us to use the executed instruction count within172

a function as a proxy for code execution time. We count this as one unit of173

execution cost. While this simplification precludes precise execution bounds,174

such bounds are not feasible with WebAssembly in general, due to it being an175

execution format designed for portable, optimizing language runtimes; however,176

as we show in Section 4, this simplified model is sufficient to calculate consistent177

execution bounds.178

8 J. Shortt et al.

Algorithm 1 Get SBs from BBs

1: function SBsOfBBs(BBs, SBs, SB, loop nesting)
2: while BBs ̸= [] do
3: BB ← car(BBs)
4: BBs← cdr(BBs)
5: // are we beginning a loop?
6: if BB.type = LOOP then
7: // yes, close off the current SB, if any, and start a new one
8: if SB ̸= [] then
9: SBs← SBs+ SB
10: end if
11: return SBsOfBBs(BBs, SBs, [BB], loop nesting + 1)
12: else
13: // are we ending a loop?
14: if BB.type = END and BB.nesting = loop nesting then
15: // yes, close off the SB and start a new SB
16: SBs← SBs+ (SB +BB)
17: SB.children← SBsOFBBs(SB, [], [], loop nesting)
18: SB ← []
19: loop nesting ← loop nesting − 1
20: else
21: // Does this BB have predecessors not in the current SB?
22: if BB.predecessors \ SB ̸= [] then
23: // Yes, start a new SB
24: return SBsOfBBs(BBs, SBs+ SB, [BB], loop nesting)
25: else
26: // No need to start a new SB
27: SB ← SB +BB
28: end if
29: end if
30: end if
31: end while
32: // close off the current SB, if any
33: if SB ̸= [] then
34: SBs← SBs+ SB
35: end if
36: return SBs
37: end function

Bounding the Execution Cost of WebAssembly Functions 9

Basic Blocks We first generate a set of basic blocks [14] for each function based179

on the following definition:180

Definition 1. (Basic Blocks of a WebAssembly function) The (set of) Basic181

Blocks (BBs) of a WebAssembly function are consecutive lines of code with the182

following properties:183

– each instruction in the body of the function is contained in exactly one BB,184

– each BB ends with either a block, loop, if, else, end, br, br if,185

br table, return, unreachable instruction and contains no other occur-186

rences of any of these instructions.187

Because a BB contains no conditional execution paths its cost can be determined188

precisely as the number of instructions in the BB.189

Super Blocks Aggregating BBs into Super Blocks (SBs) as we did in Figure 2190

allows us to analyze loop structures more readily. In our definition, an SB is191

composed of consecutive BBs, and, in the case of nested loops, other SBs.192

Definition 2. (Super Block of a WebAssembly function) The conditions that193

determine how BBs are assigned to SBs are as follows:194

– C1 There is an SB for each loop/end structure block in the function. It195

contains the BBs of that code fragment beginning with the first BB after196

the loop instruction and ending with, and including, the BB containing the197

associated end instruction.198

– C2 A function’s flow of execution can only enter an SB at the first BB in199

the SB.200

– C3 Consecutive BBs with no loops appear in the same SB subject to C2.201

Algorithm 1 describes how the list of SBs is determined. In addition to the202

code, each basic block has some attributes, including its type (e.g., LOOP, END),203

its nesting level, which indicates the depth of the loop (if any) that it is contained204

in, and its predecessors, which include all previous basic blocks. A single pass is205

made through the basic blocks that make up the function, emitting super blocks206

whenever the conditions to create a new one or end the current one are satisfied.207

These conditions are on lines 6, 14, and 21 of the algorithm. Their meaning is208

as follows:209

– line 6: the first basic block of a loop has been reached,210

– line 14: the end basic block of a loop has been reached,211

– line 21: a basic block with multiple entry points has been reached.212

Code Path Generation If an SB has no loops we can bound its cost as: the213

maximum cost over all paths from the root of the control flow graph to a leaf214

node where we consider the cost of a path to be the sum of the cost of the BBs215

on that path. That is, we consider all possible execution paths through the SB216

10 J. Shortt et al.

and take the maximum cost of those execution paths as our upper bound on the217

SB cost.218

In general we evaluate the cost of each code path to compute a bound on the219

function cost.220

Symbolic Execution and Static Single-Assignment (SSA) Form Sym-221

bolic execution models the effects of code on machine state symbolically, in-222

struction by instruction. It gives us the ability to inspect the state of the virtual223

machine at any point in a function’s execution. Column (c) of Table 1 shows the224

results of symbolic execution for our example.225

We can use symbolic execution to determine the condition under which a loop226

terminates. To find a bound on the number of loop iterations we need another227

technique that allows us to symbolically evaluate the values of the variables in228

the condition. To do this we perform program slicing [27] on the SSA. Column229

(d) of Table 1 shows this result for our example.230

Approach to Determining Loop Execution Cost As mentioned, the execu-231

tion cost of an SB is bounded by the cost of the maximum cost path. There is no232

general solution to this problem (otherwise we would have a solution to the halt-233

ing problem, as mentioned earlier). Our approach is based on rules, recognizing234

specific patterns in loop structures.235

A loop body is an SB, thus giving us a bound on the execution of a loop236

body. To arrive at an expression for a bound on a loop, we must determine a237

bound on the number of iterations. We then combine these two bounds to arrive238

at an expression for a bound on the loop execution cost, which will generally239

include the parameters of the function. We need to know the following:240

– L1: conditions that cause the loop to exit;241

– L2: variables that are used in evaluating these conditions;242

– L3: initial values of these variables when the loop is entered;243

– L4: how the variables are updated in the loop.244

To determine L1, the tool determines all possible paths through the body of the245

loop that either exit the loop, or return to the top of the loop. The tool then246

symbolically executes these paths to determine the contents of the value stack247

when a looping condition is evaluated. Since we want conditions that cause the248

loop to exit, this looping condition is negated if control returns to the top of the249

loop. This produces a list of loop conditions, one for each path through the loop250

body. We can then parse these conditions to determine which variables they use,251

which gives us L2. From line 69 in the example, we can see that the variables in252

this case are n[4] and n[5]. For each variable, we can then create the SSA form253

for all function execution paths to the loop SB. We can then simplify these SSA254

to get the possible values of the variables at loop entry. This gives us L3. Finally,255

we can create a SSA form for each of the variables, but this time simplify it over256

all execution paths from the first BB of the loop to the BB of their associated257

condition. This will give us L4.258

Bounding the Execution Cost of WebAssembly Functions 11

This result is then used to apply a set of rules depending on the condi-259

tion and the manner in which the condition variables are updated to determine260

the number of loop iterations. In our tests, we found that a small number of261

rules, usually based on observing a loop counter representing the size of a data262

structure or a static loop limit, allowed most loop constructs to be analyzed to263

produce a bound on the number of iterations. We believe that this is due to264

the fact that the structured control flow found in the source language (e.g. C or265

Rust) translates readily into WebAssembly.266

Cost Analysis We compose the analyses based on bounds on the costs of BBs,267

SBs, and loops using code path generation, symbolic execution, and SSA to268

produce a bound on the execution cost of the function. In describing these costs,269

we use the phrase SB path to mean an execution path that is made up of SBs.270

We say linear SB path to mean a path that does not loop. The SBs that make271

up the path may contain loops, but at the level of the path there are no loops.272

Similarly a BB path is an execution path that is made up of BBs and a linear273

BB path is a path with no loops. We also introduce some notation:274

– We use f to denote a function, X to denote the inputs to the function, sp275

for an SB path, both s and sc denote an SB, bp a BB path and b a BB.276

– For an SB s, let S(s) be the set of all linear SB paths of SBs in s that start277

at the first SB of s and exit s. That is, we restrict S(s) to contain only paths278

that are non-looping and are made up of SBs contained in s. We extend this279

notation to functions; S(f) denotes all linear SB paths through the function280

f .281

– Let nS(sp) be the set of SBs without a loop that are on the SB path sp.282

– Let lS(sp) be the set of SBs with a loop that are on the SB path sp283

– For a looping SB s, let N(s,X) be a bound on the number of times the loop284

will iterate given function inputs X.285

– Let B(s) be the set of all linear BB paths of the SB s.286

– Let sf be the SB that contains all of f .287

With this notation, we can express the following equalities and inequalities for288

bounding the cost of a function:289

costF (f,X) ≤ max
sp∈S(f)

costpS(sp,X) (1)

costpS(sp,X) ≤
∑

s∈nS(sp)

costS(s) +
∑

s∈lS(sp)

[max
sp′∈S(s)

costpS(sp
′, X)] ∗N(s,X)

(2)

costS(s) ≤ max
bp∈B(s)

costpB(bp) (3)

costpB(bp) =
∑
b∈bp

costB(b) (4)

costB(b) = number of instructions in BB b (5)

12 J. Shortt et al.

In these equations, the subscript F is for the cost of the function, pS for the290

cost of an SB path, S for an SB, pB for a BB path, and B for a BB. The291

equations can be summarized as follows: (1) the cost of a function is bounded292

by the maximum of the cost of all SB paths through the function; (2) the cost293

of an SB path is bounded by the sum of the cost of each non-looping SBs in the294

path plus, inductively, the cost of each of the looping SBs times the number of295

loop iterations; (3) the cost of an SB is bounded by the maximum cost of all BB296

paths of the SB; (4) the cost of a BB path is the sum of the cost of the BBs in297

the path; and (5) the cost of a BB is the number of instructions in the BB.298

Objects in Memory A case that warrants specific mention is that of objects299

in memory and functions that operate on those objects. Generally if a function300

contains code that loops over an object structure and has a loop termination301

condition that depends only on that data in the object, then Wanalyze will not302

be able to produce a bound for that function.303

4 Test Results304

We discuss three experiments that we have carried out, followed by an analysis305

of the results.306

Bubble Sort The focus of the first experiment was the bubble sort code de-307

scribed in Section 2. Thus, we start with a relatively simple test case containing308

both a nested loop and conditional execution paths. We chose this example to309

determine if Wanalyze could successfully produce a prediction for the number310

of instructions to be executed and to determine how accurate that prediction311

was compared to actual measurements.312

This experiment was run in two parts. The first part involved running the313

bubble sort WebAssembly code using thewasmtime [11] WebAssembly runtime.314

This runtime has the ability to instrument WebAssembly code to measure the315

amount of “fuel” the code consumes when executed. Conveniently, it measures316

fuel as the number of instructions executed with the exception of nop, drop,317

block, and loop instructions.318

The bubble sort WebAssembly function takes as input a fixed length array of319

32 bit integers and sorts them in place. It is well known that the performance of320

bubble sort is dependent on the composition of the data. Worst case performance321

occurs when the input data are ordered in the complete reverse of the sorted data.322

We ran two different tests so that we could compare results. The first test was323

with the data in this worst-case reverse-sorted order; the second test was done324

with the data in random order. Ten runs with input arrays sized between 10,000325

and 100,000 in increments of 10,000 were run. In order to run this WebAssembly326

code with wasmtime, it was necessary to write “glue” code in Rust that creates327

the data. This code loads the WebAssembly module containing the bubble sort,328

runs it and reports on the amount of fuel consumed.329

Bounding the Execution Cost of WebAssembly Functions 13

The second part of the experiment involved running Wanalyze on the Web-
Assembly bubble sort function. The analysis was successful and produced the
following polynomial, which is typical of the general format produced:

1

2
(31n2 + 11n− 20)

as the bound on the number of instructions that would be executed when sorting330

n items. This agrees with the well-known fact that bubble sort takes O(n2) time331

to execute.332

Table 2: Bubble sort bound vs. actual - wasmtime fuel
Items Wanalyze Worst-case Random
(K) Bound (M) Actual (M) Difference Actual (M) Difference

10 1,595 1,550 2.90% 1,401 13.85%
20 6,800 6,200 1.61% 5,601 12.48%
30 14,105 13,950 1.11% 12,594 12.00%
40 25,010 24,800 0.85% 22,401 11.65%
50 39,015 38,750 0.68% 35,000 11.47%
60 56,120 55,800 0.57% 50,397 11.36%
70 76,325 75,950 0.49% 68,625 11.22%
80 99,630 99,200 0.43% 89,597 11.20%
90 126,035 125,550 0.39% 113,400 11.14%
100 155,540 155,000 0.35% 139,990 11.11%

Table 2 contains the results of both parts of the experiment. The column333

titled “Wanalyze Bound” shows the bound that Wanalyze produced for the334

number of instructions (in millions) executed to sort that many items. The next335

column “Worst-case Actual” is the number of instructions reported by wasm-336

time when sorting a set of items that is initially in the complete reverse of sorted337

order. The column “Random Actual” is the number of instructions, but this time338

the set to be sorted is initially in random order. The two percentage columns are339

the differences between the Wanalyze bound and the actual measured result in340

wasmtime.341

Dhrystone Benchmark The second experiment followed a similar procedure
as the first, but this time the WebAssembly code generated by the emscripten
toolchain for version 2.1 of the Dhrystone benchmark [20] was analyzed. It is
expected that the Dhrystone benchmark performance is linear in the number of
iterations. Inspection of the code verifies that this is the case and Wanalyze
produces a cost bound of:

1033n+ 2578

where n is the number of Dhrystone iterations performed. See Table 3 for detailed342

measurements.343

14 J. Shortt et al.

In this case no glue layer code was necessary because the Dhrystone program344

has no input data. The number of iterations to be performed is a parameter that345

is compiled into the program.346

The results in Table 3 follow a similar format to those for bubble sort. The347

difference is that since there is no input data to consider, it was only necessary348

to run a single test for a given number of iterations.349

Table 3: Dhrystone predicted / actual
wasmtime Wanalyze

Iterations Actual Bound Difference

12,088 7,834 12,487 59.39%
15,110 9,792 15,609 59.41%
18,666 12,100 19,282 59.36%
20,336 13,180 21,007 59.39%
31,110 20,183 32,137 59.23%

MUSL C Library, AutoCAD application The third experiment consisted of350

running Wanalyze on the WebAssembly code for the MUSL C runtime library351

[23] and the AutoCAD application [8]. Each of these is a large code base, and352

so they demonstrate the ability of Wanalyze to scale. It was necessary to first353

compile the MUSL library to WebAssembly. AutoCAD is available for download354

as a WebAssembly module.355

The entire MUSL library contains over 58,000 lines of code (LOC) in C which,356

when compiled, results in over 1.26 million lines of WebAssembly code contained357

in over 14,000 distinct functions. With an elapsed time of 53 minutes, this results358

in a rate of over 1000 lines of C code analyzed per minute and a rate of 23,000359

lines of WebAssembly analyzed per minute. Wanalyze was able to analyze more360

than 94% of all functions with failure occurring in cases where the number of361

paths through the function exceeded the built-in limit of one million paths. This362

limit is used to limit the running time of the analysis and can be extended.363

AutoCAD is an order of magnitude larger than the MUSL C library, when364

measured by lines of WebAssembly code or number of functions. Comparatively,365

the elapsed time required to analyze AutoCAD is nearly linear in those metrics.366

Table 4: MUSL C library, AutoCAD application
C LOC WebAssembly LOC # functions Success rate Elapsed time

MUSL 58,237 1,267,725 14,329 94.6% 53 minutes
AutoCAD - 22,641,000 93,664 99.9% 481 minutes

Bounding the Execution Cost of WebAssembly Functions 15

Analysis As demonstrated in the final experiment, the performance of Wan-367

alyze scales with larger bodies of code. This scaling is driven by these design368

choices:369

– Wanalyze makes a single pass through the WebAssembly binary.370

– The algorithms to produce its primary data structures, BBs and SBs, are371

linear in the number of instructions.372

– The number of BBs and SBs produced for a given function is generally an373

order of magnitude less than the number of instructions in the function.374

– The analysis algorithms, symbolic execution, and SSA generation operate in375

time that is linear in the number of paths through the function.376

With both bubble sort and Dhrystone, the bound produced by Wanalyze377

is indeed a bound, in that it is greater than the measured actual value. Also,378

for both the difference measured is a similar percentage for tests with the same379

input data. However, this percentage varies across different tests and input data.380

These results meet the objective for bounds to be considered reasonable381

that we set out in the introduction. Execution costs do not exceed the bound,382

and the bound has the same computational complexity as the function being383

analyzed. However, we must ask why does the Wanalyze bound differ from the384

actual observed instruction counts? And, why does this difference vary between385

applications and data sets? For example, bubble sort with random data has a386

difference of 14% (rounded), but Dhrystone has a difference of 59%.387

The primary reason for these differences is thatWanalyze necessarily chooses388

the most costly path when evaluating alternative costs in a super block or basic389

block. In practice, this is a conservative approach because it will often be the case390

that a less costly path is taken. This means that the accuracy of Wanalyze’s391

bound will depend on how often the costliest path is taken.392

This is also an explanation for the differences between applications. Not only393

do the applications that have lower cost paths that contribute to the Wanalyze394

estimate being higher, but also there are differences in the path structure of395

the functions in the applications. In particular, there is a big difference between396

the super block control flow diagrams for two functions. Thus, the impact of397

lower-cost paths will be different between the applications.398

The same reasoning also explains why applications that run on different data399

will have different results. The effect of the lower cost paths will be different when400

different input data is used.401

5 Related Work402

The problem of automatically bounding or estimating the cost of execution of403

a program using static analysis methods has been well studied, starting with404

the work of Wegbreit [26]. In a series of papers [2,3,6], Albert et al. described405

their work on solving this problem for Java bytecode. Wegbreit’s basic method406

of analysis is used but aspects of Java bytecode created additional challenges407

such as loop detection. A notable contribution of these papers is a theoretical408

16 J. Shortt et al.

framework for formulating and solving the recurrence relations that are produced409

by the analysis. Determining a bounding on the cost of executing a loop is a core410

challenge; lexicographic ranking functions [1,2,10] are widely used both to prove411

loop termination and to determine loop costs.412

Some authors [7,19,22,24] focus on the problem of determining the algorith-413

mic complexity of a function and choose to test their solution against well-known414

algorithms with well-known complexity. Solutions also include consideration of415

amortized algorithmic costs which can improve precision. The example given in416

[19] that demonstrates this benefit is the functional queue, which performs de-417

queue operations in constant amortized time. The language used in that paper418

is OCaml. Other languages, such as Raml (resource aware ML) [18], and Solidity419

(a language for Ethereum smart contracts) [5] have been studied as well.420

Work in the WCET domain [9,15] has focused on the analysis of loops. We421

demonstrate that aspects of WebAssembly simplify this problem to some extent.422

Almost all of the papers mentioned performed experiments using specific423

data sets comprised of code that was analyzed. Our general observation is that,424

like the functions in the real-world applications that we analyzed, the test cases425

consist of a small number of small to medium sized functions or programs. The426

examples tested in [12] represent a particularly challenging set of loop constructs427

that are atypical of loop constructs we saw when analyzing real world programs.428

In contrast, we have taken an empirical approach of analyzing well-known func-429

tions, particularly those in an implementation of the standard C library imple-430

mentation MUSL.431

6 Conclusion432

As we have shown, WebAssembly provides a new opportunity to revisit the prob-433

lem of bounding the execution cost of a program. In particular, it has features434

that simplify cost analysis such as structured control flow, which means that it435

is not necessary to perform loop detection on the input program and translate it436

to an intermediate, structured form. In addition, WebAssembly only has scalar437

data types. As a consequence, expensive size analysis methods described in the438

literature can be greatly simplified.439

As future work, we can extend our results to determine a bound on the cost440

of a whole program, which includes functions that call other functions in the441

module as well as imported functions, assuming that the WebAssembly hosting442

environment will provide the cost of those functions if required. The cost bound443

of a non-recursive function call will be an expression based on that function’s444

input, which will, in turn, be expressed in terms of the inputs to the calling func-445

tion. For both recursive and non-recursive calls, we can derive a set of recurrence446

relations between the costs of these functions. The work by Albert et al. [2,3,4,6]447

describes how these recurrence relations can be solved. Future work also includes448

correctness proofs of our results, which would provide greater assurances in our449

methods. A mechanization of such a proof would also allow us to add proofs of450

performance bounds to analyzed functions.451

Bounding the Execution Cost of WebAssembly Functions 17

References452

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper453

bounds for recurrence relations in cost analysis. In: Static Analysis: 15th Inter-454

national Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings455

15. pp. 221–237. Springer, Berlin Heidelberg (2008)456

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static457

cost analysis. Journal of automated reasoning 46, 161–203 (2011)458

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Costa: Design and459

implementation of a cost and termination analyzer for java bytecode. In: Formal460

Methods for Components and Objects: 6th International Symposium, FMCO 2007,461

Amsterdam, The Netherlands, October 24-26, 2007, Revised Lectures 6. pp. 113–462

132. Springer, Berlin Heidelberg (2008)463

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of464

object-oriented bytecode programs. Theoretical Computer Science 413(1), 142–465

159 (2012)466

5. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: Don’t run on467

fumes—parametric gas bounds for smart contracts. Journal of Systems and Soft-468

ware 176, 110923 (2021)469

6. Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost anal-470

ysis. In: Verification, Model Checking, and Abstract Interpretation: 12th Interna-471

tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-472

ings 12. pp. 38–53. Springer, Berlin Heidelberg (2011)473

7. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-474

gram termination, and complexity bounds of flowchart programs. In: Static Analy-475

sis: 17th International Symposium, SAS 2010, Perpignan, France, September 14-16,476

2010. Proceedings 17. pp. 117–133. Springer, Berlin Heidelberg (2010)477

8. AutoCAD: Roundup: The AutoCAD Web App at Google I/O 2018.478

https://blogs.autodesk.com/autocad/autocad-web-app-google-io-2018/ (2018),479

accessed December, 2022480

9. Blazy, S., Maroneze, A., Pichardie, D.: Formal verification of loop bound estimation481

for wcet analysis. In: Working Conference on Verified Software: Theories, Tools,482

and Experiments. pp. 281–303. Springer (2013)483

10. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Com-484

puter Aided Verification: 17th International Conference, CAV 2005, Edinburgh,485

Scotland, UK, July 6-10, 2005. Proceedings 17. pp. 491–504. Springer, Berlin Hei-486

delberg (2005)487

11. Bytecode Alliance: wasmtime - A Standalone Runtime for WebAssembly.488

https://github.com/bytecodealliance/wasmtime (2022), accessed December, 2022489

12. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.490

In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language491

Design and Implementation. pp. 467–478. ACM, New York, NY, USA (2015)492

13. Cocke, J.: Global common subexpression elimination. In: Proceedings of a sympo-493

sium on Compiler optimization. pp. 20–24. ACM, New York NY (1970)494

14. Cooper, K.D., Torczon, L.: Engineering a Compiler. Elsevier, Burlington MA495

(2011)496

15. Cullmann, C., Martin, F.: Data-flow based detection of loop bounds. In: 7th Inter-497

national Workshop on Worst-Case Execution Time Analysis (WCET’07). Schloss498

Dagstuhl-Leibniz-Zentrum für Informatik (2007)499

18 J. Shortt et al.

16. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient500

method of computing static single assignment form. In: Proceedings of the 16th501

ACM SIGPLAN-SIGACT symposium on Principles of programming languages.502

pp. 25–35. ACM, New York, NY (1989)503

17. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-504

ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with WebAssembly. In:505

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language506

Design and Implementation. pp. 185–200. ACM, New York NY (2017)507

18. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analy-508

sis. In: Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on509

Principles of programming languages. pp. 357–370. ACM, New York NY (2011)510

19. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for511

OCaml. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of512

Programming Languages. pp. 359–373. ACM, New York NY (2017)513

20. Keith S. Thompson: Dhrystone v2.1. https://github.com/Keith-S-514

Thompson/dhrystone/tree/master/v2.1 (2022), accessed December, 2022515

21. Lucas, S.: The origins of the halting problem. Journal of Logical and Algebraic516

Methods in Programming 121, 100687 (2021)517

22. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer518

programs using expected sizes. In: Tools and Algorithms for the Construction and519

Analysis of Systems: 27th International Conference, TACAS 2021, Held as Part520

of the European Joint Conferences on Theory and Practice of Software, ETAPS521

2021, Luxembourg City, Luxembourg, March 27–April 1, 2021, Proceedings, Part522

I. pp. 250–269. Springer, Berlin Heidelberg (2021)523

23. musl: musl libc. https://musl.libc.org/ (2023), accessed May, 2023524

24. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound525

analysis and amortized complexity analysis. In: Computer Aided Verification: 26th526

International Conference, CAV 2014, Held as Part of the Vienna Summer of527

Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26. pp. 745–761.528

Springer, Berlin Heidelberg (2014)529

25. WebAssembly Community Group: WebAssembly Introduction.530

https://webassembly.github.io/spec/core/intro/introduction.html (2020), ac-531

cessed December, 2022532

26. Wegbreit, B.: Mechanical program analysis. Communications of the ACM 18(9),533

528–539 (1975)534

27. Weiser, M.: Program slicing. IEEE Transactions on software engineering SE-10(4),535

352–357 (1984)536

	Bounding the Execution Cost of WebAssembly Functions

